

QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

QFlux: From Closed to Open Quantum Dynamics

Victor S Batista

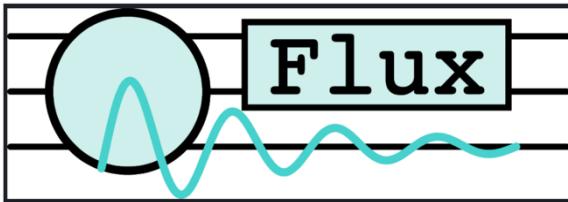
Yale University, Department of Chemistry and Yale Quantum Institute

Part IV: Open Systems & Dilation

- *Real systems are never isolated*
- *Environment causes:*
 - *Relaxation*
 - *Decoherence*
 - *Energy exchange*
- *Need density matrices, not wavefunctions*
- *Goal: simulate non-unitary dynamics on unitary hardware*

<https://qflux.batistalab.com>

[JCTC_IV.ipynb](#)



QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

QFlux: From Closed to Open Quantum Dynamics

Victor S Batista

Yale University, Department of Chemistry and Yale Quantum Institute

Part IV: Open Systems & Dilation

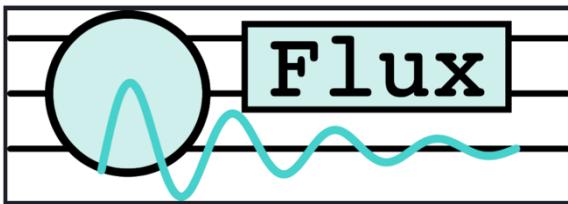
This tutorial is based on the manuscript

QFlux: Quantum Circuit Implementations for Molecular Dynamics

Part IV - Dilation method for Open Systems

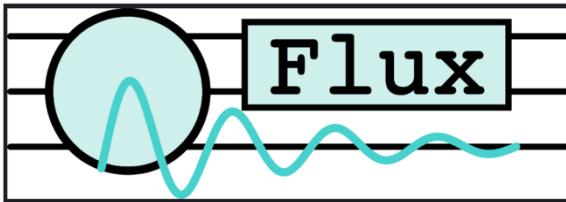
Authors:

Xiaohan Dan, Saurabh Shivpuje, Yuchen Wang, Brandon C. Allen, Delmar G. A. Cabral, Pouya Khazaei, Alexander V. Soudackov, Zixuan Hu, Ningyi Lyu, Eitan Geva, Sabre Kais, and Victor S. Batista



Roadmap for Part IV

- Physics: open systems & **Lindblad dynamics**
- Encoding:
 - Vectorized **density matrices**
 - **Kraus operator** representation
- Core idea: **dilation** = embed non-unitary in a bigger unitary
- Demonstrations:
 - Spin- $\frac{1}{2}$
 - Spin chain
 - Double-well proton transfer



QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

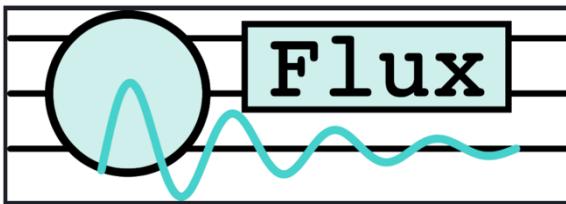
PART A — OPEN SYSTEM FOUNDATIONS

What Is an Open Quantum System?

- System + environment \rightarrow entangled
- Reduced state described by density matrix
- Evolution:

$$\rho(t) = \mathcal{G}(t) \rho(0)$$

- Propagator $\mathcal{G}(t)$ is non-unitary



QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

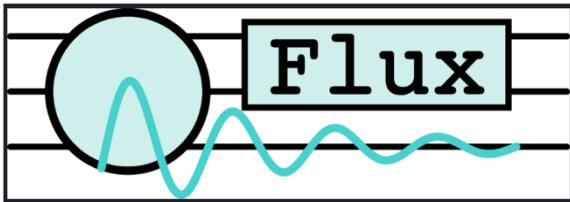
The Lindblad Master Equation

Most general completely positive, trace-preserving Markovian evolution

$$\frac{\partial \rho(t)}{\partial t} = -\frac{i}{\hbar} [H, \rho(t)] + \frac{1}{2} \sum_n \gamma_n \left(2L_n \rho(t) L_n^\dagger - \rho(t) L_n^\dagger L_n - L_n^\dagger L_n \rho(t) \right)$$

- General Markovian open-system equation
- **Coherent term:** commutator with H
- **Dissipative terms:** jump operators L_n (encode relaxation and dephasing)
- Assumes:
 - Weak coupling
 - Fast bath (Markov)
 - No memory

Where dissipative chemical processes meet quantum information



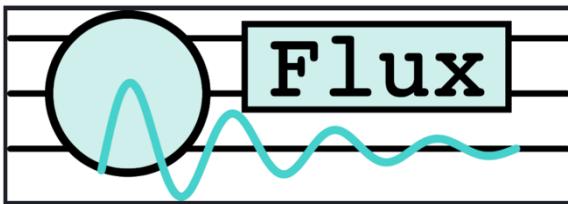
QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

Why Lindblad Is a Good Starting Point

- Widely used in:
 - Spectroscopy
 - Transport
 - Quantum devices
- Efficient numerically

Warning: Breaks down for:

- Strong (bath-system) coupling
- Structured baths
- Memory effects (Part VI)



QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

PART B — ENCODING OPEN SYSTEMS ON QUBITS

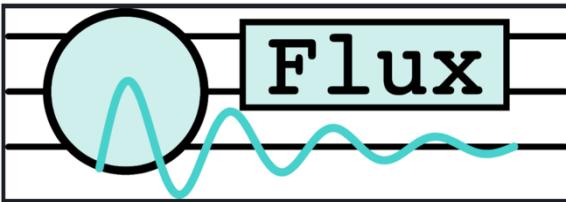
Two Ways to Encode Density Matrices

1. Vectorization: Superoperator Picture

- $\rho \rightarrow |\nu_\rho\rangle$ reshaped in N^2 space:

$$|\nu_\rho\rangle = [\rho_{11}, \dots, \rho_{1N}, \rho_{21}, \dots, \rho_{2N}, \dots, \rho_{N1}, \dots, \rho_{NN}]^\top$$

- **Direct propagator:** $\frac{\partial |\nu_\rho(t)\rangle}{\partial t} = -iH_{\text{eff}} |\nu_\rho(t)\rangle$
- $H_{\text{eff}} = H_C + iH_D$
- $H_C = H \otimes \mathbb{I} - \mathbb{I} \otimes H^T$,
- $H_D = \frac{1}{2} \sum_n \gamma_n [2L_n \otimes L_n^* - \mathbb{I} \otimes L_n^T L_n^* - L_n^\dagger L_n \otimes \mathbb{I}]$
- (non-unitary)
- $|\nu_\rho(t)\rangle = \mathbf{G}(t)|\nu_\rho(0)\rangle$
- $|\nu_\rho(t)\rangle = e^{-iH_{\text{eff}}t}|\nu_\rho(0)\rangle$
- Script S.3.1:** [JCTC_IV.ipynb](#)
Script S.3.2: [JCTC_IV.ipynb](#)



QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

PART B — ENCODING OPEN SYSTEMS ON QUBITS

Two Ways to Encode Density Matrices, cont'd

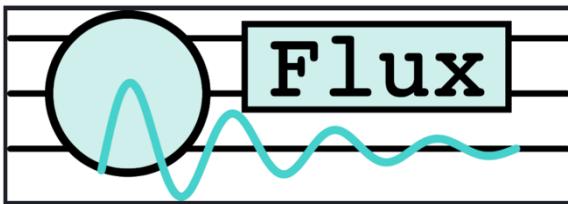
2. **Kraus representation: Ensemble picture** $\rho(0) = \sum_n p_n(0) |\psi_n(0)\rangle\langle\psi_n(0)|$

- $\rho \rightarrow |\nu_\rho\rangle$
- Evolve ensemble of pure states
- (quantum channels)

$$\begin{aligned}\rho(t) &= \sum_{in} p_n(0) M_i(t) |\psi_n(0)\rangle\langle\psi_n(0)| M_i^\dagger(t) \\ &= \sum_{in} p_n(0) |\psi_n^i(t)\rangle\langle\psi_n^i(t)|\end{aligned}$$

$$\rho(t) = \sum_i M_i(t) \rho(0) M_i^\dagger(t) \quad |\psi_n^i(t)\rangle = M_i(t) |\psi_n(0)\rangle \quad (\text{non-unitary})$$

*Fewer qubits than vectorization: Kraus operators $M_i(t)$ are $N \times N$ matrices
Many circuits though*



QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

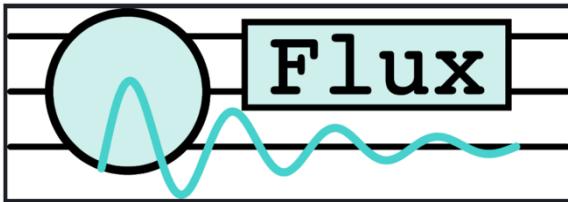
From Propagator to Kraus (Choi Map)

Motivation for UCRs

Script S.1.1: [JCTC_IV.ipynb](#)

Choi–Jamiołkowski isomorphism theorem

- Build Choi matrix from propagator :
$$C = \sum_{i,j=1}^N (E_{ij} \otimes I) \mathbf{G}(t) (I \otimes E_{ij})$$
- Diagonalize \rightarrow eigenvalues λ_k :
$$C = \sum_{k=1}^{N^2} \lambda_k u_k u_k^\dagger$$
- Reshape eigenvectors $\lambda_k u_k$ into $N \times N$ matrices \rightarrow Kraus operators M_k
- Discard small λ_k

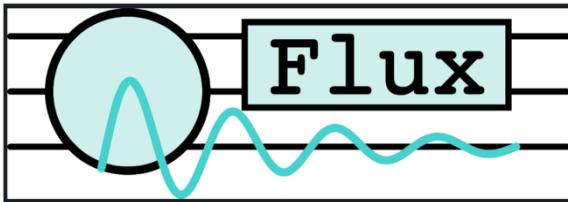


QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

PART C — THE CORE IDEA: DILATION

The Fundamental Problem

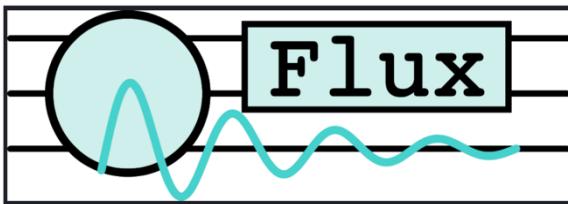
- Quantum circuits must be unitary
- Lindblad & Kraus are non-unitary
- Solution: embed non-unitary into a larger unitary evolution



QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

Physical Intuition: Irreversibility from Tracing Out

- Enlarge Hilbert space: system + ancilla
- Evolve unitarily in the enlarged space
- Trace out ancilla → non-unitary system dynamics



QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

Sz.-Nagy Dilation Theorem

Core Formula

- For non-unitary M , build the unitary U_M

$$U_M = \begin{pmatrix} M & D_{M^\dagger} \\ D_M & -M^\dagger \end{pmatrix}$$

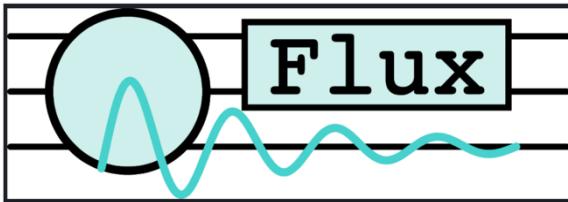
$$D_M = \sqrt{I - M^\dagger M}$$

$$D_{M^\dagger} = \sqrt{I - M M^\dagger}.$$

$$U_M \begin{pmatrix} \mathbf{v} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} M\mathbf{v} \\ \mathbf{v}' \end{pmatrix}$$

- One ancilla qubit
- Guarantees unitary embedding

Script S.2.1: [JCTC_IV.ipynb](#)



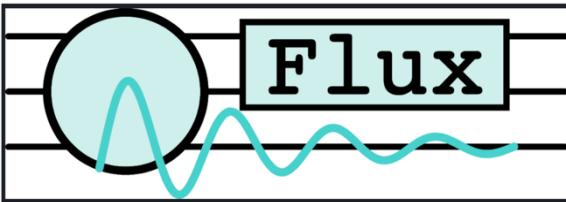
QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

Optimized Dilations

More advanced dilation schemes

Script S.4.5: [JCTC_IV.ipynb](#)

- SVD-based dilation
- Walsh diagonal synthesis
- Fewer CNOTs
- Built into QFlux



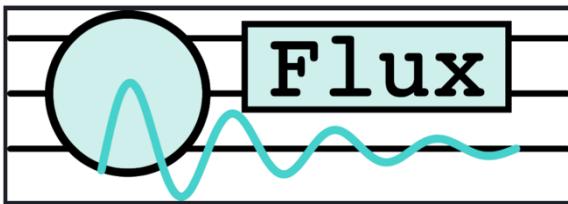
QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

PART D — CLASSICAL BENCHMARK FIRST

Always Benchmark Classically

Script S.3.3: [JCTC_IV.ipynb](#)

- Solve Lindblad with:
 - Matrix exponential
 - ODE Solver (e.g., QuTiP's mesolve)
- Establish reference dynamics
- Only then go quantum



QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

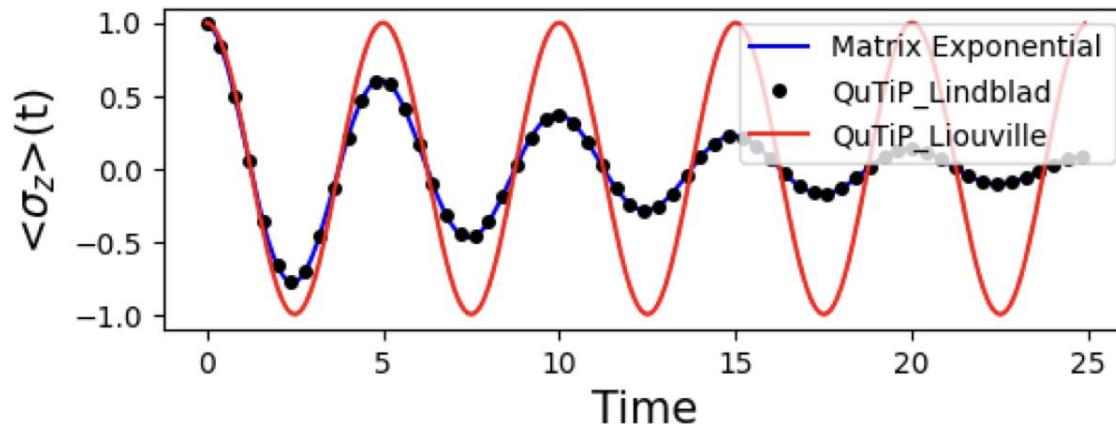
PART E — EXAMPLES

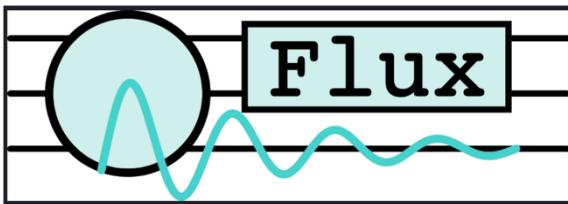
Example 1a — Spin-½ with Dissipation

Script S.4.1-S.4.4: [JCTC_IV.ipynb](#)

- Hamiltonian: $H = E_0 \sigma^z + \Delta \sigma^x$ $E_0 = 0, \Delta = 0.1 \times 2\pi$.

$$\frac{\partial \rho(t)}{\partial t} = -\frac{i}{\hbar} [H, \rho(t)] + \gamma \left[\sigma^+ \rho(t) \sigma^- - \frac{1}{2} \{ \sigma^- \sigma^+, \rho(t) \} \right]$$





QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

PART E — EXAMPLES

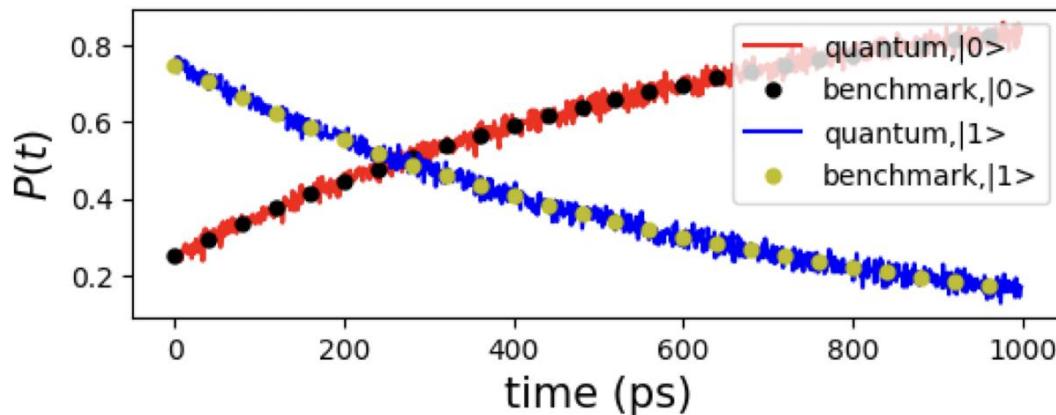
Example 1b — Amplitude Damping

Scripts S.4.5 & S.4.5: JCTC_IV.ipynb

- Hamiltonian: $H = E_0 \sigma^z + \Delta \sigma^x$ $E_0 = 0$ and $\Delta = 0$.

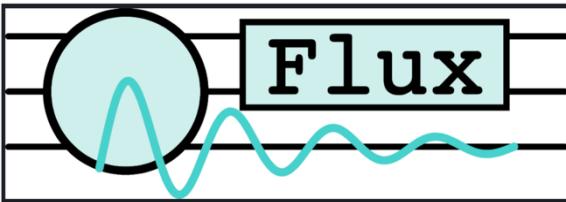
$$\frac{\partial \rho(t)}{\partial t} = -\gamma \left[\sigma^+ \rho(t) \sigma^- - \frac{1}{2} \{ \sigma^- \sigma^+, \rho(t) \} \right]$$

$$\rho(0) = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}$$



$$P_0 = A_0 n_d \sqrt{N_{000}/N}$$

$$P_1 = A_0 n_d \sqrt{N_{011}/N}$$



QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

PART E — EXAMPLES

Example 2 — Spin-1/2 Chain: Many-Body Dissipation

$$H = \sum_{n=0}^{N-1} \Omega_n \sigma_n^z - \frac{1}{2} \sum_{n=0}^{N-2} \left(J_{n,n+1}^x \hat{\sigma}_n^x \hat{\sigma}_{n+1}^x + J_{n,n+1}^y \hat{\sigma}_n^y \hat{\sigma}_{n+1}^y + J_{n,n+1}^z \hat{\sigma}_n^z \hat{\sigma}_{n+1}^z \right)$$

$$\dot{\rho}(t) = -i[H, \rho(t)] + \frac{1}{2} \sum_{m=1}^2 \sum_{n=0}^{N-1} \gamma_{m,n} \left[2L_{m,n}\rho(t)L_{m,n}^\dagger - \rho(t)L_{m,n}^\dagger L_{m,n} - L_{m,n}^\dagger L_{m,n}\rho(t) \right]$$

- Amplitude + dephasing noise:

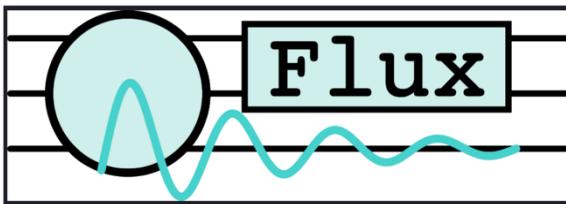
$$L_{1,n} = \hat{\sigma}_n^- \quad L_{2,n} = \hat{\sigma}_n^+ \hat{\sigma}_n^-$$

- Observable: survival amplitude

$$A_s(t) = \sqrt{\text{Tr}[\rho(t)\rho(0)]} \quad A_s(t) = \sqrt{|\langle \tilde{\nu}_\rho(t) | \tilde{\nu}_\rho(0) \rangle|}$$

- Shows relaxation and loss of revivals

Parameter	$n = 0$	$n \neq 0$
Ω_n	0.65	1.0
$J_{n,n+1}^x$	0.75	1.0
$J_{n,n+1}^y$	0.75	1.0
$J_{n,n+1}^z$	0.0	0.0



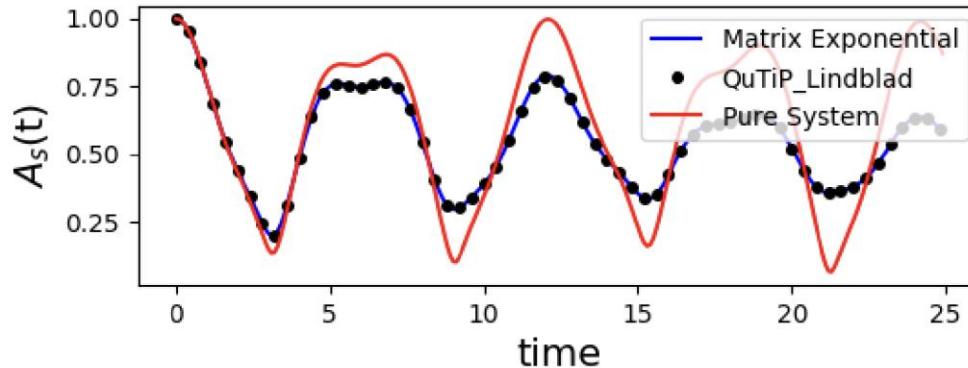
QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

PART E — EXAMPLES

Example 2 — Spin-1/2 Chain: Many-Body Dissipation

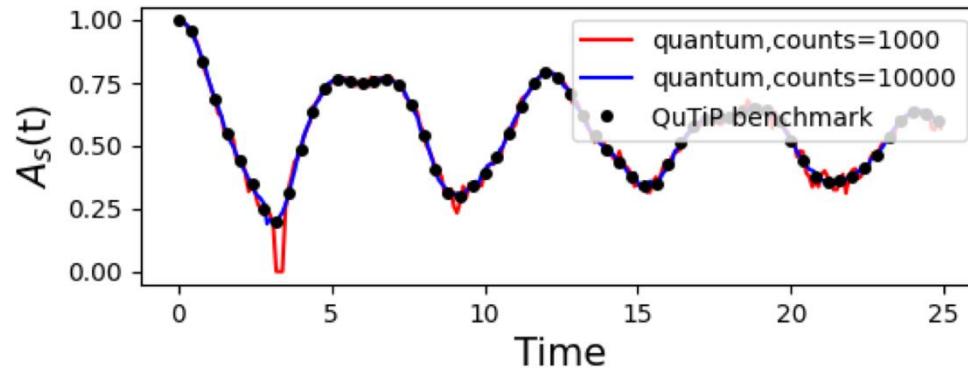
[JCTC IV.ipynb](#)

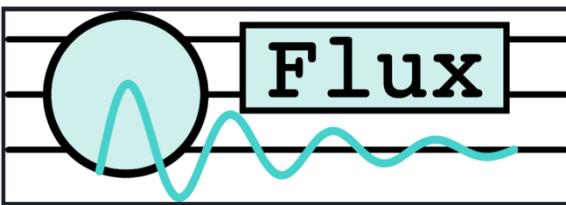
Script S.5.7



[JCTC IV.ipynb](#)

Script S.5.8





QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

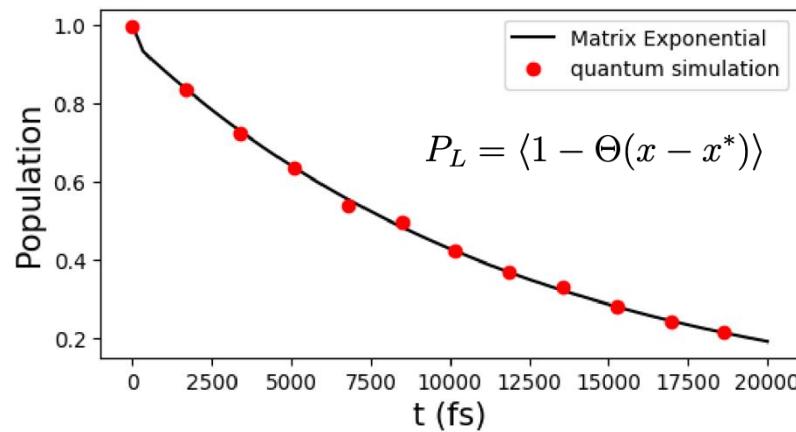
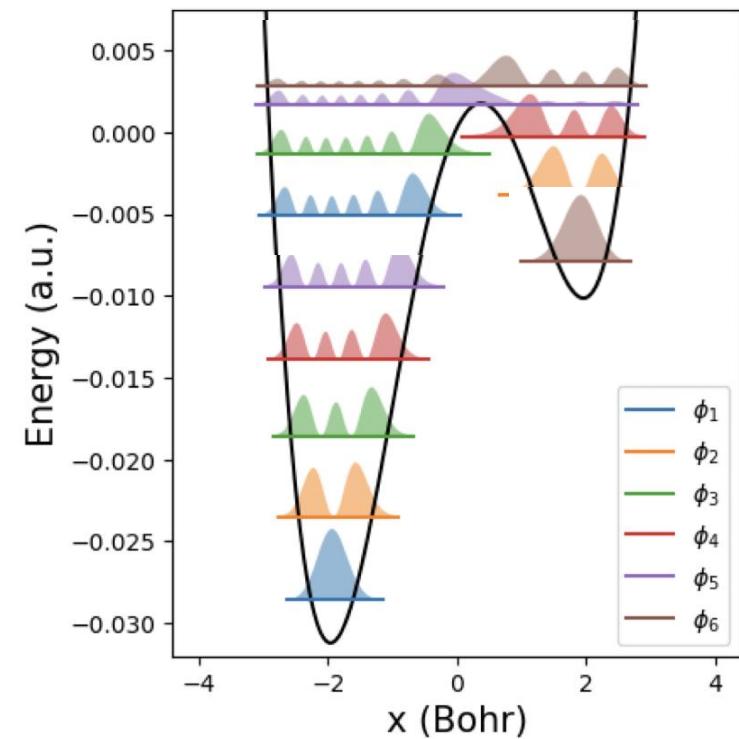
PART E — EXAMPLES

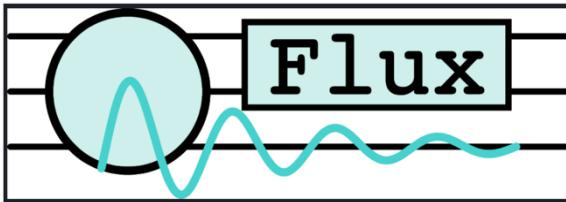
Example 3 — Double-Well Proton Transfer

[JCTC_IV.ipynb](#)

[Script S.6.6-S.6.9](#)

- Proton in DNA base-pair double well
- Initial state localized in right well
- Lindblad bath drives barrier crossing





QFlux: An Open-Source Python Package for Quantum Dynamics Simulations

Take-Home Messages

- We can now simulate:
dissipation, decoherence, dephasing, relaxation, and chemical kinetics
on quantum hardware.
- Open systems require non-unitary evolution implemented by dilation
- Two encodings:
 - Vectorization \rightarrow fewer circuits, more qubits
 - Kraus \rightarrow fewer qubits, more circuits
- QFlux unifies:
 - Classical benchmarks
 - Dilation circuits
 - Chemical realism